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2 Dipartimento di Fisica and Infn, Università di Roma, La Sapienza, P.A. Moro 5, 00185 Roma, Italy
3 Infn, Sezione di Roma 1, P.A. Moro 5, 00185 Roma, Italy

Received: 14 August 1997 / Revised: 2 December 1997 / Accepted: 30 January 1998

Abstract. We study the dynamical behavior of the Sherrington Kirkpatrick model. Thanks to the APE
supercomputer we are able to analyze large lattice volumes, and to investigate the low T region. We
present a new and precise determination of the remnant magnetization and of its time decay exponent, of
the energy time decay exponent, and we discuss aging phenomena in the model. We exclude validity of
naive aging, and propose different options that fit the numerical data.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.50.-y Studies of specific magnetic
materials

The study of the dynamical behavior of disordered
(and complex) systems is receiving a large amount of at-
tention (see for example [1–4] and references therein). On
one side this is because the study of dynamical behaviors
can shed light on a large realm of new and interesting
phenomena (aging is one of them). On the other side a re-
liable description of the amorphous glassy state will surely
include a crucial, non-trivial dynamical behavior.

In many cases a full analytic computation is not yet
feasible and many analytical results are based on conjec-
tural grounds. Numerical simulations are here very useful
in order to support the theoretical conjectures. Unfortu-
nately a critical issue in the dynamics is the dependence of
the times needed to reach equilibrium on the lattice size.
This issue can be clarified only when both the size of the
system is very large and the observation times are very
long. This problem may be bypassed by considering the
behavior of the infinite (practically very large) system as
function of the (Monte-Carlo) time.

This approach requires the study of very large sys-
tems. Unfortunately in the models that have been stud-
ied better, for which a full analytic solution for the static
behavior is available, the time needed for executing one
dynamical step increases severely with the lattice size. It
grows as the lattice size N to the second power, N2 for
the Sherrington-Kirkpatrick model (SK) [5], and as Np

with p ≥ 3 for the p-spin models. Faster simulations can
be done for the diluted models, but in this case we do not
know the static solution exactly. Moreover, given our lack
of analytic control of the dynamic behavior, we cannot be
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completely sure that there are not some subtle differences
among diluted and non diluted models.

Long range models may be classified into two different
categories:

• In the first class of models (taken in the infinite vol-
ume limit) intensive quantities like the energy E(t)
or the magnetization m(t) evolve toward their equilib-
rium values in the limit where t→∞.
• In the second category dynamical intensive quanti-

ties do not tend to their equilibrium values, and truly
metastable states are present.

Such difference in the dynamical behavior is strong. It
is believed that the models with a continuous replica sym-
metry breaking belong to the first category while models
with a one step replica symmetry breaking belong to the
second category.

The present investigation addresses this question in the
case of the SK model [6]. The issue is very sensitive be-
cause some numerical investigations have suggested that
the asymptotic properties of the SK model are different
of the equilibrium one and in particular that the remnant
magnetization is non zero also at infinite time [7] (that
would also imply that the weak ergodicity breaking sce-
nario cannot hold). One of the results of this note is to
show that the value of the remnant magnetization is com-
patible with being zero in the infinite volume limit and
that the SK model does belong to the first category we
have described.

In the following we will show and discuss some of our
numerical results. The main features that make these re-
sults relevant are that we have been able to work on large
lattices and for low value of the temperature T . Our use
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of the APE-100 supercomputer [8] has been crucial to al-
low such large scale simulations. The fact that our pro-
gram is truly parallelized (by dividing the spatial lattice
among the different processors) makes possible to study
very large lattices. Anyway the dynamics is still a sequen-
tial Metropolis one (we change one spin of a given system
at the time). We also notice that since we are dealing
with the infinite range mean field model obtaining, as in
the code we used1, an effective parallelization on a mesh
with fixed connectivity is far from trivial.

In this note we will focus on the four main points we
have been able to analyze:

1. We determine with good precision the time decay ex-
ponent of the magnetization.

2. We analyze the behavior of the remnant magnetization
as a function of N .

3. We analyze the energy time decay exponent.
4. We discuss aging through the magnetization-

magnetization time dependent correlation function.

First a few details about our simulations. We study the
usual Sherrington-Kirkpatrick model [5,9], with quenched
couplings J chosen from a Gaussian distribution. We have
studied lattices of size N = 2088, 4032, 8064 and 18432,
and T = 0.25, 0.50 and 0.75 with a local Metropolis dy-
namics starting from a fully magnetized state (all spins set
to +1 state). We study from 100 to 200 realizations of the
quenched couplings for each N value but for the largest
one, where we have order 15 samples. In each realization
of the quenched disorder we have followed six copies of
the system evolving independently (mainly to get a better
computational efficiency). Runs have been 10 000 lattice
sweeps long.

To fit our data we have used the Minuit library from
Cernlib, and the jack-knife approach to compute statistical
errors. The results we present here have been obtained by
using large time windows for the fits.

The dynamical behavior of physical quantities in sys-
tems with relevant quenched disorder is usually expected
to converge to the equilibrium values with power laws. The
magnetization per spin on a lattice of size N is expected
to behave as

m(N)(t) ' m(N)
∞ + m̃(N)t−δ

(N)

, (1)

where the superscript (N) (that we will omit in the fol-
lowing when we can do so without creating ambiguities)
indicates that the parameters depend on the lattice size.

The previous formula needs a few comments. In any
finite system the residual magnetization must eventually
go to zero at infinite time. However we can distinguish
at least two time scales. Let us consider for example the
case of an unfrustrated system with two equal free energy
states differing by a global spin reversal. At first the sys-
tem will fall in one of the two equilibrium states, and on
a much longer time scale the system will start to oscil-
late among the two different equilibrium states. Only in

1 The code we have used for the numerical simulation is due
to Paolucci and Rossetti, unpublished.
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Fig. 1. Magnetization decay exponent δ versus T for different
N values.

this second region of the time evolution the magnetization
will become zero. If the ground states of the system are in
some sense random, we may expect that from the central
limit theorem the residual magnetization at the end of the
first phase of the dynamics will be proportional to N−

1
2 .

A similar phenomenon for large, but not too large times is
expected to take place here. The effective remnant mag-
netization is likely to be N−ω. While in an unfrustrated
system ω = 1

2 , the presence of a large number of equilib-
rium states suggests a smaller value of ω and our data are
compatible with the value ω = 1

4 found close to Tc for the
SK model. The possibility ω = 0, i.e. of a non decay of
the remnant magnetization with the size, is a priori pos-
sible, but it is not the one preferred by our data which
are well compatible with an approach to equilibrium for
all the quantities.

In Figure 1 we plot the exponent δ as a function of T
for the different N values. Our data are not precise enough
to detect a clear N dependence of δ (only for the smallest
lattice, N = 2088 one can maybe read a systematic devia-
tion). The straight line that goes through the figure is the
line δ = T/Tc: it fits very well the data, and indeed the fit
is best on the larger lattice size, N = 18432. We consider
this plot as good evidence that

δ(T ) '
T

Tc
· (2)

The exponent δ is linear in T/Tc, and

δ(T → T−c ) = 1 (3)

(for a discussion of the difference of this limit value and
the limit δ(T → T+

c ) see the second of [1]). Our estimate
is also compatible with the best estimate of [10], while the
models defined on φ3 graphs (that is expected to have the
same critical behavior of the SK model) seems to prefer a
value δ(T ) ' 2T/3Tc [11].



E. Marinari et al.: Dynamical behavior of the SK model 497

0.2 0.4 0.6 0.8
T

−0.010

0.000

0.010

0.020

0.030
m

N=2088
N=4032
N=8064
N=18432

Fig. 2. The remnant magnetization versus T for different N
values.
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Fig. 3. The energy time decay exponent versus N−1/2 for
different T values.

We plot our best estimate for the remnant magnetiza-
tion as a function of T for different N values in Figure 2.
The N dependence of the data is very weak. When assum-
ing a power decay one finds that the data are fully com-
patible with the power 1/4, as discussed in the second of
[1]. It is clear from our data that a constant behavior, with
a non-zero residual magnetization, cannot be excluded.

Our third result concerns the energy time decay ex-
ponent. In Figure 3 we show it versus the inverse square
root of the volume. At low T we get an N -independent
estimate, with a clear dependence over T (we get 0.4 at
T = 0.25 and 0.6 at T = 0.5). At T = 0.75 we seem to
have a strongly N -dependent result. Even if in this case it
is not easy to be sure, the behavior of the power exponent
is again compatible with a linear dependence on T .

Our last results concern aging. We have measured the
two time spin-spin correlation function

C(tw, tw + t) ≡
1

N
〈
∑
i

σi(tw)σi(tw + t)〉 , (4)

always starting from random initial conditions. Our sim-
ulations were performed at T = 0.5Tc, with “lattice size”
N = 4096 and 16 independent samples with 6 replicas
each.
The simplest scenario one can think about is naive ag-
ing, i.e.

C(tw, tw + t) = f

(
t

tw

)
, (5)

in the region where both t and tw are large.
Our results for C are displayed in Figure 4. Although

the data are in some very rough agreement with a naive ag-
ing behavior there are strong systematic corrections which
obviously modify the functional form of (5). Naive aging
is not satisfied in the Sherrington-Kirkpatrick model. The
type of violations of naive aging are similar to those ob-
served in real experiments: the function C(tw, tw + t) at
fixed s ≡ t/tw decreases (increases) when tw increases for
s < 1 (for s > 1).

In naive aging one assumes that the time scale of relax-
ation at tw scales as tw and this assumption is not correct
in the approach of [12] and [2,3]. One can take one of
many different attitudes.

The first possibility is that naive aging is not correct,
and we decide to use some phenomenological corrections
to it. In this case a different form of scaling may be ex-
pected. The most popular assumption is interrupted aging
[12]. It corresponds to assume that

C(tw, tw + t) = f

(
t

tw

1+µ
)
. (6)

The introduction of the power correction µ may help to
fit the data at large t/tw but it does not improve the sit-
uation at small t/tw and spoils the agreement of aging at
t/tw ' 1. It seems that this correction is not very use-
ful here. Moreover there is no theoretical justification for
interrupted aging in this context.

Another possibility, natural in the contest of [2,3] is to
assume that

C(tw, tw + t) = f

(
ln(t+ tw)

ln(tw)

)
. (7)

We have plotted our data for C(tw, tw + t) versus ln(t +
tw)/ ln(tw) in Figure 5. This change of the scaling law def-
initely improves the situation, so this is a possible solution
to the problem. It is interesting to note that in this version
of the scaling form we have that

lim
tw→∞

C(tw, λtw) (8)

goes to a value independent on λ, which can be therefore
identified with qEA. Obviously in this case the function f
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Fig. 4. C(t, tw) as a function of t/tw for different tw values (from 8 to 32768). T = 0.5Tc.
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Fig. 5. lnC(tw, tw + t) as a function of ln(t+ tw)/ ln(tw). T = 0.5Tc.

will be discontinuous when its argument is equal to one.
We can also say that the time for reaching a given value
of C < qEA is given by

t = tγ(C)
w (9)

where the function γ is related to the function f . For large
values of tw the value of C that can be reached after the
time t and after λt do coincide. In this way the ultra-
metricity of the configurations is satisfied also in the dy-
namics (as it should be): for example it implies that if in
a given time we can go at distance 1 − C from a given
configurations, we can arrive always at the same distance
if we double the time. This would be the scenario that is

in better agreement with the existing theoretical compu-
tations [3].

The last possibility is that naive aging is asymptoti-
cally correct, but there is a correction to it which vanishes
as a negative power of time. The rational for this choice
is that we know (as we shall see later) that some power
corrections to scaling are necessarily present at small t.

Here we explore if this third possibility is compatible
with our numerical data. We note that in the region where
t� tw we should have

C(tw, tw + t) = qEA +At−α . (10)
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Fig. 6. Fitted f0 as a function of t/tw for α = 0.2. T = 0.5Tc.
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Fig. 7. Fitted f1 as a function of t/tw for α = 0.2. T = 0.5Tc.

The exponent α is a function of T ; it is equal to 0.5 at the
critical temperature and it decreases to a smaller value
when T decreases (it has been estimated to be equal to
0.36 at zero temperature [13]). As far as the value of α is
not too large (and it is certainly much smaller than 0.36
for three dimensional spin glasses, i.e. close to 0.06) the
corrections to the scaling law cannot be easily neglected.

The simplest modification to the naive aging predic-
tion which is compatible with the previous equation is:

C(tw, tw + t) = f0

(
t

tw

)
+ t−αf1

(
t

tw

)
, (11)

where the two functions f0(s) and f1(s) are not divergent
in the limit s→ 0. In principle also the exponent α could
be a function of s, but for simplicity we assume that it is
a constant.

We have fitted the data using equation (11). The best
value of α we find is 0.2, which is a factor two smaller that
the theoretical predictions. The origin of this discrepancy
is not clear (possible reasons are finite volume effects, a
crossover behavior at s = 0, a strong s dependence of
α). If we stick to our best value α = 0.2 we obtain the
functions f0(s) and f1(s) displayed in Figures 6 and 7. In
this way we estimate a value of qEA close to 0.75, which
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is slightly different from the theoretical value ' 0.6. Also
in this case the origins of this discrepancy are not clear.

In order to exhibit the quality of our best fits we show
in Figure 8 the quantity C(tw, tw+t)−f1(t/tw) t−α. Here,
at the expense of having introduced an extra function, the
data seem to collapse well on a single curve. We also plot
the same quantity for a different value of α, to show that
in this case the collapse is not as good.

The main difference among the behavior of (11) and
the one of (7) is that in the case of (11) lim

tw→∞
C(tw, tw

(1 + s)) is a non-trivial function of s, while in the case of
(7) it does not depend on s. The scaling (7) is indeed in
agreement with a picture where the barriers for reaching
a value q of the overlap strongly depend on q.

Longer runs on larger lattices will be able to improve
our understanding of the situation. We believe that un-
derstanding details of the aging pattern is important, and
that these results are a first step toward this interesting
goal.
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2. S. Franz, M. Mézard, Europhys. Lett. 26, 209 (1994).
3. L. Cugliandolo, J. Kurchan, Philos. Mag. 71, 501 (1995);

J. Phys A: Math. Gen. 27, 5749 (1994).
4. A. Baldassarri, cond-mat/9607162; H. Yoshino, cond-

mat/9612071.
5. D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35, 1792

(1975); S. Kirkpatrick, D. Sherrington, Phys. Rev. B 17,
4384 (1978).

6. G. Parisi, F. Ritort, J. Phys. I France 3, 969 (1993).
7. W. Kinzel, Phys. Rev. B 33, 5086 (1986); R.D. Henkel,

W. Kinzel, J. Phys. A: Math. Gen. 20, L727 (1987); W.
Kinzel, J. Phys. C: Solid State Phys. 21, L381 (1988).

8. A. Bartoloni et al., Int. J. High Speed Comp. 5, 637 (1993);
Int. J. Mod. Phys. C4, 955 (1993); Int. J. Mod. Phys. C4,
969 (1993).
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